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What is resolution?

The Rayleigh length of an imaging system is the smallest distance between
two point sources that can be resolved.

Loosely referred to as the resolution of the imaging device.

(a) Airy disks (b) One-dimensional plot
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Resolution and Fourier transform

Spatial domain:(
imaged object

)
∗
(

point spread function
)

=
(

low-resolution image
)

Fourier domain:

F
(

imaged object
)
· F
(

point spread function
)

= F
(

low-resolution data
)

Goal of super-resolution algorithms: Leverage prior information in order to
overcome the inherent resolution limit of the imaging device – extract
high-resolution features from observed low-resolution or coarse information.
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Mathematical model of super-resolution [Donoho 1992]

Unknown: Atomic measure

µ :=

S∑
j=1

ajδxj , aj ∈ C, xj ∈ T := [0, 1).

Known: Perturbation of M consecutive Fourier coefficients

y := FMµ+ η ∈ CM

where
FMµ(m) :=

{
µ̂(m)

}M−1
m=0

and
µ̂(m) :=

∫
T

e−2πimx dµ(x).

Goal: Recover µ. Primarily its support.
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Imaging of point sources

Unknown: Atomic measure

µ :=

S∑
j=1

ajδxj , aj ∈ C, xj ∈ T := [0, 1).

(a) Inverse scattering (b) Direction of arrival

Applications: Super-resolution microscopy, geophysics, astronomy, remote
sensing, inverse scattering, direction of arrival, and line spectral estimation.

Mathematical connections: Sparse recovery, non-harmonic Fourier
analysis, sub-Nyquist sampling, and diffraction limited imaging.
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Three main difficulties
1. It is a non-linear inverse problem:{

(xj, aj)
}S

j=1
↔ µ 7→ FM(µ).

Well-posed in the sense that this map is injective if M ≥ 2S (Prony).

2. We deal with non-harmonic sums:

µ̂(m) =

S∑
j=1

aje−2πimxj ; µ̂(t) =

S∑
j=1

aje−2πitxj .

3. Sources can be closely spaced:

(c) separation is 4/M (d) separation is 0.6/M

Figure: |µ ∗ DM |, where DM(x) =
1
M

M−1∑
m=0

e2πimx
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Geometric notions

Minimum separation:
∆ := min

j 6=k
|xj − xk|T

Rayleigh length: ≈ 1/M

Super-resolution factor: Rayleigh length divided by the target resolution

SRF :=
standard resolution

target resolution
:=

1/M
∆

=
1

M∆
.

Sub-Nyquist or diffraction limited regime:

SRF ≥ 1 or equivalently ∆ ≤ 1
M
.
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Existing methods (up to around 2017–2018)

∆� 1/M or SRF < 1 ∆� 1/M or SRF � 1

1a. TV-min (µ complex) O(‖η‖2) Can fail even if η = 0

1b. TV-min (µ positive) O(‖η‖2) O(∆−2S+1‖η‖2)

2. Greedy methods O(‖η‖2) Can fail if η 6= 0

3. Subspace methods O(‖η‖2) Only numerical results

4. “Best” algorithm O(SRF2S−1‖η‖2)

References:
1. TV-min: [Candès, Fernandez-Granda 2013, 2014], [Tang, Bhaskar,

Shah, Recht 2013], [Duval, Peyré 2015], [Morgenshtern, Candès 2016],
[Denoyelle, Duval, Peyré 2016], [Schiebinger, Robeva, Recht 2017]

2. Greedy: [Duarte, Baraniuk 2013], [Fannjiang, Liao 2012]

3. Subspace: [Liao, Fannjiang 2016], [Moitra 2015]

4. SR Limit: [Donoho 1992], [Demanet, Nguyen 2015]
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Main questions

Study the ∆� 1/M or SRF � 1 regime.

1. Computational: Are there accurate and efficient algorithms?

2. Computational analysis: What are the performance guarantees of said
algorithms?

3. Information theoretic: What is the best possible recovery rate
independent of algorithm?

(a) ∆ = 0.6/M, no noise (b) ∆ = 0.6/M, σ = 0.01

Figure: Output of the MUSIC algorithm
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Role of geometry; which is harder?
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Fourier matrices

Unknown: Atomic measure µ :=

S∑
j=1

ajδxj , where aj ∈ C and xj ∈ T := [0, 1).

Known: Consecutive M noisy Fourier coefficients

y := FMµ+ η, FMµ(m) :=

∫
T

e−2πimx dµ(x) for m = 0, 1, . . . ,M − 1.

Fourier matrix associated with X = {xj}S
j=1:

ΦM := ΦM(X) :=


1 1 · · · 1

e−2πix1 e−2πix2 · · · e−2πixS

...
...

...
e−2πi(M−1)x1 e−2πi(M−1)x2 · · · e−2πi(M−1)xS

 ,

and so
y = ΦM(X)a + η.
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Fourier matrices and super-resolution

Fourier matrix associated with X = {xj}S
j=1:

ΦM := ΦM(X) :=


1 1 · · · 1

e−2πix1 e−2πix2 · · · e−2πixS

...
...

...
e−2πi(M−1)x1 e−2πi(M−1)x2 · · · e−2πi(M−1)xS

 .

Minimum singular value σS(ΦM(X)) controls:
I Robustness of subspace methods (will return to this later).
I Min-max error or information theoretic limit (will return to later).

Connections between super-resolution and Fourier matrices is hinted at by
earlier work [Donoho 1992], [Demanet, Nguyen 2015], [Moitra 2015].
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Known results about Fourier matrices

Dichotomy:
I If ∆ ≥ C/M for some C > 1, then σS(ΦM) &

√
M.

[Vaaler 1985], [Moitra 2015], based on work by Beurling and Selberg.

(Trivially σ1(ΦM) ≤
√

MS)

I If ∆ < 1/M, then it appears that σS(ΦM) can be as small as O(∆S−1).

[Gautschi 1962], [Gautschi, Inglese 1987], [Bazán 2000].

For example, [Gautschi 1962] showed that for a square general
Vandermonde matrix with nodes Z = {z1, . . . , zS} ⊆ C,

σS(ΦS(Z)) ≥ min
1≤j≤S

S∏
k=1, k 6=j

|zk − zj|
1 + |zk|

,

where equality holds if and only if z1, . . . , zS lie on the same line in C.

This bound is sharp, but can be improved under certain configurations.
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Separated clumps model

Separated clumps: (Two-scale model) A set X = {xj}S
j=1 consists of

separated clumps with parameters (R,M, S, α, β) if we have the disjoint union

X =
R⋃

r=1

Xr

where each Xr is contained in an interval of length 1/M and

1. (Intra-clump separation) ∆ ≥ α/M where α ≤ 1.

2. (Inter-clump separation) If R > 1, then dist(Xj,Xk) ≥ β/M where β ≥ 1.

≥ α/M

≥ β/MX1

≥ α/M

X2 X3≥ β/M

Two Extremes:
I R = S: each clump is a single point and ∆ ≥ 1/M.
I R = 1: one clump contains all S points.
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Lower bound for separated clumps
Theorem (L., W. Liao, ACHA 2021)
Suppose X consists of separated clumps with parameters (R,M, S, α, β),
where M ≥ S2, α ∈ (0, 1), and β ≥ maxr 20

√
Sλ5/2

r /
√
α where λr = |Xr|. Then

there exist explicit constants {Cr}R
r=1 that do not depend on M and α such that

σS(ΦM(X)) ≥
√

M
( R∑

r=1

C2
r

( 1
α

)2λr−2)−1/2
.

Rough estimate: Letting λ = maxr λr, note that SRF = 1/M
α/M = 1/α, so

σS(ΦM(X)) ≥ C(λ)

√
M
R

SRF−λ+1 = C(λ)

√
M
R

(M∆)λ−1.

Phase transition:

1/∆0 M

σS(ΦM(X)) heavily depends on the

“geometry” or configuration of X
σS(ΦM(X)) ∼

√
M

regardless of finer properties of X
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Related work

Theorem (L., W. Liao, ACHA 2021)
If X consists of separated clumps with parameters (R,M, S, α, β) where
M ≥ S2, α ∈ (0, 1), and β ≥ maxr 20

√
Sλ5/2

r /
√
α where λr = |Xr|, there exist

explicit constants {Cr}R
r=1 where Cr only depends on λr and

σS(ΦM(X)) ≥
√

M
( R∑

r=1

C2
r

( 1
α

)2λr−2)−1/2
.

Brief history on “geometrically” aware lower bounds on σS(ΦM):
I For general Vandermonde matrices, see [Gautschi 1962] for square

case, and [Bazán 2000] for rectangular ones.
I For rectangular Fourier matrices, this result appeared in 2018,

concurrently with [Batenkov, Demanet, Goldman, Yomdin, 2020].
I Follow up papers [Kunis, Nagel, 2020], [Demanet, Goldman, Yomdin,

2021].
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Proof technique
Duality: If v ∈ CS is the S-th right singular vector of ΦM(X), then

σS(ΦM(X)) = max
f trig poly degree M−1

f (X)=v

‖f‖−1
L2(T).

Method: Construct trigonometric polynomials {LX,j}S
j=1

1. Each LX,j has degree M − 1

2. LX,j(xj) = 1

3. LX,j(xk) = 0 for all xk in the same clump as xj

4. LX,j decays quickly away from xj.

∥∥∥ S∑
j=1

vj LX,j︸ ︷︷ ︸
approximate interpolant

∥∥∥
L2(T)

≤
( S∑

j=1

‖LX,j‖2
L2(T)

)1/2
.

By a robust version of duality,

σS(ΦM(X)) &
( S∑

j=1

‖LX,j‖2
L2(T)

)−1/2
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Subspace methods

Subspace (algebraic) methods:
1. MUSIC [Schmidt 1986]

2. ESPRIT [Roy, Kailath 1989]

3. MPM [Hua, Sarkar 1990]

Hankel matrix: Suppose M ≥ 2S + 1 and L ≈ M/2.

H(y) :=


y0 y1 · · · yM−1−L

y1 y2 · · · yM−L

...
...

...
yL yL+1 · · · yM−1

 .

Fourier decomposition of Hankel matrix

H(FMµ) = ΦL(X) diag(a) ΦM−1−L(X)t.

Which implies
H(y) = H(FMµ) + H(η).
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Subspace methods continued

Compute the best rank S approximation of H(y) by SVD truncation:

ŨΣ̃Ṽ∗ = best rank S approximation of H(y).

If the noise is sufficiently small,

Range(Ũ) ≈ Range(ΦL(X))

0

φL(x2)
φL(x1)

φL(x) if x /∈ X

signal space

noise space
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Estimation of signal parameters via rotational invariance techniques

ESPRIT algorithm:
I Noiseless case:

1. Compute a matrix U whose columns form an orthonormal basis for the
range of ΦM(X).

2. Let U0 and U1 be the first and last L rows of U, respectively.
3. The eigenvalues of U†0 U1 are {e2πixj}S

j=1, from which we extract {xj}S
j=1.

I Noise case:
1. Compute a matrix Ũ whose columns form an orthonormal basis an

approximation of the range of ΦM(X).
2. Let Ũ0 and Ũ1 be the first and last L rows of U, respectively.
3. Calculate the eigenvalues of Ũ†0 Ũ1, project them to the complex unit circle,

and extract their arguments.

Subspace methods require knowing S, or one estimates S through some
other knowledge such as noise level. Recent work [P. Liu, H. Zhang 2021]
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Theorem (L., W. Liao, A. Fannjiang, IEEE IT 2020)
For any S-atomic µ with support X and any η such that ‖H(η)‖2 is sufficiently
small, if X̃ is the output of ESPRIT, we have

md(X, X̃) ≤ C(M, S)

(minj |aj|)σ2
S(ΦL(X))︸ ︷︷ ︸

numerical conditioning

‖η‖2.

Under the clumps model (under additional assumptions on X),

md(X, X̃) ≤ C(R,M, S, λ)SRF2λ−2

minj |aj|︸ ︷︷ ︸
numerical conditioning

‖η‖2.

Comparison: Previous best bounds for ESPRIT are

O(‖η‖2σ
−5
S (ΦM/2)) [Aubel, Bölcskei, 2016],

O(‖H(η)‖2σ
−4
S (ΦM/2)) [Fannjiang, 2016].

ESPRIT is near optimal: Upper bound is sharp in terms of SRF, and is one
M factor away from min-max lower bound in [Batenkov, Goldman, Yomdin,
2020].
ESPRIT automatically adapts to the geometry: The algorithm does not
require knowledge of the clump parameters!
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Non-harmonic uncertainty principle

Concentration: Given a S-atomic measure µ and L ≥ S, the quantity

CL(µ) :=
|µ̂(0)|2

L∑
m=0

|µ̂(m)|2
.

Uncertainty principle: If µ is S-atomic, expect its Fourier coefficients to not
be perfectly localized.

Theorem (L., W. Liao, A. Fannjiang, IEEE IT 2021)
If L ≥ S > 1, then

CL,S := sup
µ is S-atomic

µ6=0
µ complex

CL(µ) ≤ 1− 4−S,

CL,S,R := sup
µ is S-atomic

µ6=0
µ real

CL(µ) ≤ 1− (8S− 1)−1.

Can be seen as a quantitative version of a result in [Donoho, Stark 1989].
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Numerical simulations
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(a) 1 clump
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Figure: The phase transition curves below which the algorithm succeeds (defined to be
successful if md(X, X̃) < ∆/2) with probability at least 95% for λ = 2, 3, 4 with respect
to log10(SRF) (x-axis) and log10 σ (y-axis). The slopes are computed by least squares.
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Numerical simulations continued

λ = 2 λ = 3 λ = 4 Numerical Theoretical
1-clump: MUSIC 2.78 5.50 7.75 2.49λ− 2.11 2λ− 2
2-clump: MUSIC 2.89 5.38 7.00 2.06λ− 1.08 2λ− 2
3-clump: MUSIC 2.90 5.25 7.00 2.05λ− 1.10 2λ− 2
4-clump: MUSIC 3.01 5.12 8.50 2.75λ− 2.70 2λ− 2
1-clump: ESPRIT 2.36 4.88 6.70 2.17λ− 1.86 2λ− 2
2-clump: ESPRIT 2.61 4.62 7.29 2.34λ− 2.18 2λ− 2
3-clump: ESPRIT 2.03 4.32 6.79 2.38λ− 2.76 2λ− 2
4-clump: ESPRIT 1.81 4.34 6.43 2.31λ− 2.74 2λ− 2

Table: Slopes extracted from the previous phase transition curves of MUSIC and
ESPRIT.
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Min-max error for sparse model on the grid

Grid model: Suppose X ⊆ { n
N }

N−1
n=0 for some large N. Every S-atomic µ can

be identified with a S-sparse vector u ∈ CN
S .

Min-max error: Accuracy of the “best” possible algorithm (including those
that have exponential run-time),

E(M,N, S, δ) = inf
φ : y→CN

S
y=FM u+η

sup
u∈CN

S : ‖u‖2≤1
η∈CM : ‖η‖2≤δ

‖φ(u, η)− u‖2.

No algorithm can beat the min-max error, and in particular,

ESPRIT error for this sparsity model ≥ E(M,N, S, δ).
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Sharp estimate on the min-max error

Theorem (L., W. Liao, ACHA 2021)
Let S ≥ 1 and M ≥ 4S. For N sufficiently large,

1√
M

SRF2S−1δ .M,S E(M,N, S, δ) .M,S
1√
M

SRF2S−1δ,

where SRF = N/M.

Remarks:
1. Non-asymptotic bounds for the min-max error with explicit constants.

2. Single clump with S points is the worst case scenario?

3. Proof relies on showing that E(M,N, S, δ) is related to σS(ΦM(X ∪ X̃)),
where X ∪ X̃ is a set of cardinality at most 2S.

Related work: [Donoho 1992], [Demanet, Nguyen 2015], [Batenkov,
Goldman, Yomdin, 2020]

41 / 61



Sharp estimate on the min-max error

Theorem (L., W. Liao, ACHA 2021)
Let S ≥ 1 and M ≥ 4S. For N sufficiently large,

1√
M

SRF2S−1δ .M,S E(M,N, S, δ) .M,S
1√
M

SRF2S−1δ,

where SRF = N/M.

Remarks:
1. Non-asymptotic bounds for the min-max error with explicit constants.

2. Single clump with S points is the worst case scenario?

3. Proof relies on showing that E(M,N, S, δ) is related to σS(ΦM(X ∪ X̃)),
where X ∪ X̃ is a set of cardinality at most 2S.

Related work: [Donoho 1992], [Demanet, Nguyen 2015], [Batenkov,
Goldman, Yomdin, 2020]

42 / 61



Outline

Mathematics of super-resolution

Non-harmonic Fourier matrices

Subspace methods

Fundamental limitations of super-resolution

Multiple snapshot super-resolution

Conclusions

43 / 61



How to incorporate additional information?

Unknown: Time-dependent atomic measure, where the locations are fixed,
but the amplitudes are time varying

µt :=
S∑

j=1

aj(t)δxj , aj(t) ∈ C, xj ∈ T := [0, 1).

Known: Perturbed consecutive M Fourier coefficients at times t1, . . . , tn,

y(t`) := FM(µt`) + η(t`), ` = 1, . . . , n.

This is the multiple-snapshot problem, in contrast to the single-snapshot
version earlier.
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Multiple snapshot ESPRIT

ESPRIT readily extends to the multi-snapshot case:

1. Empirical covariance matrix

Y :=
1
n

n∑
`=1

y(t`)y(t`)
∗.

2. Ũ is the best rank S approximation of Y.

3. Find the eigenvalues of Ũ†0 Ũ1, project to the unit complex circle, and
extract their arguments.
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What is the performance of ESPRIT

Is there any advantage of taking Fourier measurements over time?

1. Without any additional assumptions on a(t) and η(t),

multi-snapshot error = single-snapshot error.

2. Assume that η(t`) is complex i.i.d. Gaussian vector with covariance ν2I.
In expectation, we expect

multi-snapshot error ≤ 1√
n
· single-snapshot error.

This comes from just doing naive averaging:

avg(y(t1), . . . , y(tn)) = FM

( S∑
j=1

avg(aj(t1), . . . , aj(tn))δxj

)
+

1
n

n∑
`=1

η(t`)︸ ︷︷ ︸
√

n cancellation

.
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Theorem (L., Z. Zhu, W. Gao, W. Liao, preprint 2021)

1. Assume that each η(t`) ∼ CN(0, ν2I) (this can be relaxed significantly).

2. Assume that a(t1), . . . , a(tn) span CS. Or equivalently the amplitude
covariance matrix

A =
1
n

n∑
`=1

a(t`)a(t`)
∗

is strictly positive definite.

For n sufficiently large, the output X̃ of ESPRIT satisfies, with probability at
least 1− δ,

md(X, X̃) ≤ C(M, S)
√

n
√
λS(A)σS(ΦM)︸ ︷︷ ︸

numerical conditioning

ν
(

1 +

√
log(1/δ)

M

)
.

Under the clumps model,

md(X, X̃) ≤ C(M, S)SRFλ−1

√
n
√
λS(A)︸ ︷︷ ︸

numerical conditioning

ν
(

1 +

√
log(1/δ)

M

)
.
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Single and multi snapshot

I Single snapshot:

ESPRIT error .M,S,a
noise
σ2

S(ΦM)
.M,S,a SRF2λ−2noise.

Dependence on SRF and noise match the min-max rate, so ESPRIT is
optimal in this sense.

I Multi snapshot:

ESPRIT error .M,S,a
noise√
nσS(ΦM)

.M,S,a
1√
n

SRFλ−1noise.

Dependence on SRF, number of snapshots n, and noise match a
Cramer-Rao lower bound [L., Zhu, Gao, Liao 2021], so ESPRIT is
optimal in this sense.
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Difficulty of super-resolution
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Difficulty of super-resolution
Order from least to most challenging in the limit ∆→ 0:

(a) O(SRF2‖η‖2)

(b) O(SRF4‖η‖2)

(c) O(SRF8‖η‖2)
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Some remarks

I Classical work by Rayleigh and Abbe study the simplest scenario where
there are only two point sources. Our results give a description for more
complicated arrangements.

I Our results show that super-resolution is possible in more situations than
previously thought, since the error is O(SRF2λ−2‖η‖2) as opposed to
O(SRF2S−2‖η‖2).

I ESPRIT is provably optimal (in terms of SRF), so criticism about
“instability of subspace methods” is not fair.

I Since σS(ΦM(X)) > 0 for any set X, an error bound of the form

error .
noise

σ2
S(ΦM(X))

means that (at least for point sources and Fourier measurements)
separation is never the real bottleneck of super-resolution and that noise
is the real culprit.
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Thank you!
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